Small Recent Development in Separators for High‐Temperature Lithium‐Ion Batteries

Separators are crucial for the safe operation of lithium ion batteries at high‐temperatures. This Review discusses the recent development in separator technologies for realizing high‐temperature lithium ion batteries by focusing on their layered structure design with various materials. Future challenges and directions are discussed for achieving remarkable performances of separators in a high‐temperature environment.


Abstract

Lithium‐ion batteries (LIBs) are promising energy storage devices for integrating renewable resources and high power applications, owing to their high energy density, light weight, high flexibility, slow self‐discharge rate, high rate charging capability, and long battery life. LIBs work efficiently at ambient temperatures, however, at high‐temperatures, they cause serious issues due to the thermal fluctuation inside batteries during operation. The separator is a key component of batteries and is crucial for the sustainability of LIBs at high‐temperatures. The high thermal stability with minimum thermal shrinkage and robust mechanical strength are the prime requirements along with high porosity, ionic conductivity, and electrolyte uptake for highly efficient high‐temperature LIBs. This Review deals with the recent studies and developments in separator technologies for high‐temperature LIBs with respect to their structural layered formation. The recent progress in monolayer and multilayer separators along with the developed preparation methodologies is discussed in detail. Future challenges and directions toward the advancement in separator technology are also discussed for achieving remarkable performance of separators in a high‐temperature environment.